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Abstract. We study the speed of convergence to approximately optimal states in two classes of potential games. We provide bounds interms
of the number ofrounds, where a round consists of a sequence of movements, with eachplayer appearing at least once in each round. We model the
sequential interaction between players by abest-response walkin the state graph, where every transition in the walk corresponds to a best response
of a player. Our goal is to bound the social value of the statesat the end of such walks. In this paper, we focus on two classesof potential games:
selfish routing games, and cut games (or party affiliation games [7]).

Despite the recent progress for bounding the price of anarchy of selfish routing games [19, 1, 5], many intriguing questions on the speed of
convergence are still open. It is known that exponentially long best-response walks may exist to pure Nash equilibria [7], and random best-response
walks converge to solutions with good approximation guarantees after polynomially many best responses [11]. In this paper, we study the speed
of convergence on deterministic best-response walks in these games and prove that starting from an arbitrary configuration, after one round of best
responses of players, the resulting configuration is aΘ(n)-approximate solution. Furthermore, we show that startingfrom an empty configuration,
the solution after any round of best responses is a constant-factor approximation. We also provide a lower bound for the multi-round case, where
we show that for any constant number of roundst, the approximation guarantee cannot be better thannǫ(t), for someǫ(t) > 0.

We also studycut games, that provide an illustrative example of potential games. The convergence of potential games to locally optimum
solutions has been studied in the context of local search algorithms [13, 22]. In this games, we consider two social functions: thecut (defined as
the weight of the edges in the cut), and thetotal happiness(defined as the weight of the edges in the cut, minus the weightof the remaining edges).
For the cut social function, we prove that the expected social value after one round of a random best-response walk is at least a constant factor
approximation to the optimal social value. We also exhibit exponentially long best-response walks with poor social value. For the unweighted
version of this cut game, we proveΩ(

√
n) andO(n) lower and upper bounds on the number of rounds of best responses to converge to a constant-

factor cut. In addition, we suggest a way to modify the game toenforce a fast convergence in any fair best-response walk. For the total happiness
social function, we show that for unweighted graphs of sufficiently large girth, starting from a random configuration, greedy behavior of players in
a random order converges to an approximate solution after one round.

1. Introduction. The main tool for analyzing the performance of systems whereselfish players interact without
central coordination, is the notion of theprice of anarchyin a game [16]; this is the worst case ratio between an
optimal social solution and a Nash equilibrium. Intuitively, a high price of anarchy indicates that the system under
consideration requires central regulation to achieve goodperformance. On the other hand, a low price of anarchy does
not necessarily imply high performance of the system. One main reason for this phenomenon is that in many games,
the repeated selfish behavior of players may not lead to a Nashequilibrium. Moreover, even if the selfish behavior
of players converges to a Nash equilibrium, therate of convergence might be very slow. Thus, from a practical and
computational viewpoint, it is important to evaluate the rate of convergence to approximate solutions.

By modeling the repeated selfish behavior of the players as a sequence of atomic improvements, the resulting con-
vergence question is related to the running time of local search algorithms. In fact, the theory of PLS-completeness [22]
and the existence of exponentially long walks in many local optimization problems such as Max-2SAT and Max-Cut,
indicate that in many of these settings, we cannot hope for a polynomial-time convergence to a Nash equilibrium.
Therefore, for such games, it is not sufficient to just study the value of the social function at Nash equilibria. To
deal with this issue, we need to bound the social value of a strategy profile afterpolynomially manybest-response
improvements by players.

Potential gamesare games in which any sequence of improvements by players converges to a pure Nash equilib-
rium. Equivalently, in potential games, there is no cycle ofstrict improvements of players. This is equivalent to the
existence of a potential function that is strictly increasing after any strict improvement. In this paper, we study the
speed of convergence to approximate solutions in two classes of potential games: selfish routing games (or congestion
games) and cut games.
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Related Work..This work is motivated by the negative results of the convergence in congestion games [7], and
the study of convergence to approximate solutions games [14, 11]. Fabrikant, Papadimitriou, and Talwar [7] show
that for general congestion and asymmetric selfish routing games, the problem of finding a pure Nash equilibrium is
PLS-complete. This implies exponentially long walks to equilibria for these games. Our model is based on the model
introduced by Mirrokni and Vetta [14] who addressed the convergence to approximate solutions in basic-utility and
valid-utility games. They prove that starting from any state, one round of selfish behavior of players converges to a
1/3-approximate solution in basic-utility games. Goemans, Mirrokni, and Vetta [11] study a new equilibrium concept
(i.e. sink equilibria) inspired from convergence on best-response walks and proved fast convergence to approximate
solutions on random best-response walks in (weighted) congestion games. In particular, their result on the price of
sinking of the congestion games implies polynomial convergence to constant-factor solutions on random best-response
walks in selfish routing games with linear latency functions. Other related papers studied convergence for different
classes of games such as load balancing games [6], market sharing games [10], and distributed caching games [8].

A main subclass of potential games is the class ofcongestion gamesintroduced by Rosenthal [18]. Monderer and
Shapley [15] proved that congestion games are equivalent tothe class ofexact potential games. In an exact potential
game, the increase in the payoff of a player is equal to the increase in the potential function. Both selfish routing games
and cut games are a subclass of exact potential games, or equivalently, congestion games. Tight bounds for the price of
anarchy is known for both of these games in different settings [19, 1, 5, 4]. Despite all the recent progress in bounding
the price of anarchy in these games, many problems about the speed of convergence to approximate solutions for them
are still open.

Two main known results for the convergence of selfish routinggames are the existence of exponentially long best-
response walks to equilibria [7] and fast convergence to constant-factor solutions on random best-response walks [11].
To the best of our knowledge, no results are known for the speed of convergence to approximate solutions on deter-
ministic best-response walks in the general selfish routinggame. Preliminary results of this type in some special load
balancing games are due to Suri, Tóth and Zhou [20, 21]. Our results for general selfish routing games generalize their
results.

The Max-Cut problem has been studied extensively [12], evenin the local search setting. It is well known
that finding a local optimum for Max-Cut is PLS-complete [13,22], and there are some configurations from which
walks to a local optimum are exponentially long. In the positive side, Poljak [17] proved that for cubic graphs the
convergence to a local optimum requires at mostO(n2) steps. The total happiness social function is considered inthe
context of correlation clustering [2], and is similar to thetotal agreement minus disagreement in that context. The best
approximation algorithm known for this problem gives aO(log n)-approximation [3], and is based on a semidefinite
relaxation.

Our Contribution.. Our work deviates from bounding the distance to a Nash equilibrium [22, 7], and focuses
in studying the rate of convergence to an approximate solution [14, 11]. We consider two types of walks of best
responses: random walks and deterministic fair walks. On random walks, we choose a random player at each step. On
deterministic fair walks, the time complexity of a game is measured in terms of the number ofrounds, where a round
consists of a sequence of movements, with each player appearing at least once in each round.

First, we give tight bounds for the approximation factor of the solution after one round of best responses of players
in selfish routing games. In particular, we prove that starting from an arbitrary state, the approximation factor after
one round of best responses of players is at mostO(n) of the optimum and this is tight up to a constant factor. We
extend the lower bound for the case of multiple rounds, wherewe show that for any constant number of roundst, the
approximation guarantee cannot be better thannǫ(t), for someǫ(t) > 0. On the other hand, we show that starting from
an empty state, the state resulting after one round of best responses is a constant-factor approximation.

We also study the convergence incut games, that are motivated by theparty affiliation game[7], and are closely
related to the local search algorithm for the Max-Cut problem [22]. In the party affiliation game, each player’s strategy
is to choose one of two parties, i.e,si ∈ {1,−1} and the payoff of playeri for the strategy profile(s1, s2, . . . , sn) is
∑

j sjsiwij . The weight of an edge corresponds to the level ofdisagreementof the endpoints of that edge. This game
models the clustering of a society into two parties that minimizes the disagreement within each party, or maximizes
the disagreement between different parties. Such problemsplay a key role in the study of social networks.

We can model the party affiliation game as the following cut game: each vertex of a graph is a player, with payoff
its contribution in the cut (i.e. the total weight of its adjacent edges that have endpoints in different parts of the cut). It
follows that a player moves if he can improve his contribution in the cut, or equivalently, he can improve the value of
the cut. The pure Nash equilibria exist in this game, and selfish behavior of players converges to a Nash equilibrium.

2



We consider two social functions: the cut and the total happiness, defined as the value of the cut minus the weight
of the rest of edges. First, we provefast convergence on random walks. More precisely, we prove that selfish behavior
of players in a round in which the ordering of the player is picked uniformly at random, results in a cut that is a
1
8 -approximation in expectation. We complement our positiveresults by examples that exhibitpoor deterministic
convergence. That is, we show the existence of fair walks withexponentiallength, that result in a poor social value.
We also model the selfish behavior ofmildly greedyplayers that move if their payoff increases by at least a factor of
1 + ǫ. We prove that in contrast to the case of (totally) greedy players, mildly greedy players converge to a constant-
factor cut after one round, under any ordering. For unweighted graphs, we give anΩ(

√
n) lower bound and anO(n)

upper bound for the number of rounds required in the worst case to converge to a constant-factor cut.
Finally, for the total happiness social function, we show that for unweighted graphs of large girth, starting from

a random configuration, greedy behavior of players in a random order converges to an approximate solution after one
round. We remark that this implies a combinatorial algorithm with sub-logarithmic approximation ratio, for graphs
of sufficiently large girth, while the best known approximation ratio for the general problem isO(log n) [3], and is
obtained using semidefinite programming.

2. Definitions and Preliminaries. In order to model the selfish behavior of players, we use the the notion of
a state graph. Each vertex in the state graph represents astrategy stateS = (s1, s2, . . . , sn), and corresponds to a
pure strategy profile (e.g an allocation for a congestion game, or a cut for a cut game). The arcs in the state graph
correspond to best response moves by the players.

DEFINITION 2.1. A state graphD = (V , E) is a directed graph, where each vertex inV corresponds to a strategy
state. There is an arc from stateS to stateS′ with labelj iff by letting playerj play his best response in stateS, the
resulting state isS′.

Observe that the state graph may contain loops. Abest responsewalk is a directed walk in the state graph. We
say that playeri plays in the best response walkP , if at least one of the edges ofP has labeli. Note that players play
their best responses sequentially, and not in parallel. Given a best response walk starting from an arbitrary state, we
are interested in the social value of the last state on the walk. Notice that if we do not allow every player to make a best
response on a walkP , then we cannot bound the social value of the final state with respect to the optimal solution. This
follows from the fact that the actions of a single player may be very important for producing solutions of high social
value1. Motivated by this simple observation, we introduce the following models that capture the intuitive notion of a
fair sequence of moves.
One-round walk: Consider an arbitrary ordering of all playersi1, . . . , in. A walk P of lengthn in the state graph is

a one-round walkif for eachj ∈ [n], thejth edge ofP has labelij .
Covering walk: A walk P in the state graph is acovering walkif for each playeri, there exists an edge ofP with

labeli.
k-Covering walk: A walk P in the state graph is ak-covering walkif there arek covering walksP1,P2, . . . ,Pk,

such thatP = (P1,P2, . . . ,Pk).
Random walk: A walk P in the state graph is arandom walk, if at each step the next player is chosen uniformly at

random.
Random one-round walk: Let σ be an ordering of players picked uniformly at random from theset of all possible

orderings. Then, the one-round walkP corresponding to the orderingσ, is arandom one-round walk.
Note that unless otherwise stated, all walks are assumed to start from an arbitrary initial state. This model has

been used by Mirrokni and Vetta [14], in the context of extensive games with complete information.
Congestion games..A congestion game is defined by a tuple(N, E, (Si)i∈N , (fe)e∈E) whereN is a set of

players,E is a set of facilities,Si ∈ 2E is the pure strategy set for playeri: a pure strategysi ∈ Si for playeri is a
set of facilities, andfe is a latency function for the facilitye depending on its load. We focus on linear delay functions
with nonnegative coefficients;fe(x) = aex + be.

Let S = (s1, . . . , sN) ∈ ×i∈NSi be a state (strategy profile) for a set ofN players. The cost of playeri, in a state
S is ci(S) =

∑

e∈si
fe(ne(S)) where byne(S) we denote the number of players that use facilitye in S. The objective

of a player is to minimize its own cost. We consider as a socialcost of a stateS, the sum of the players’ costs and we
denote it byC(S) =

∑

i∈N ci(S) =
∑

e∈E ne(S)fe(ne(S)).

1e.g. in the cut social function, most of the weight of the edges of the graph might be concentrated to the edges that are adjacent to a single
vertex.
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In weighted congestion games, playeri has weighted demandwi. By θe(S), we denote the total load on a facility
e in a stateS. The cost of a player in a stateS is ci(S) =

∑

e∈si
fe(θe(S)). We consider as a social cost of a state

S, the weighted sumC(S) =
∑

i∈N wici(S) =
∑

e∈E θe(S)fe(θe(S)). We will use subscripts to distinguish players
and superscripts to distinguish states.

Note that the selfish routing game is a special case of congestion games. Although we state all the results for
congestion games with linear latency functions, all of the results (including the lower and upper bounds) hold for
selfish routing games.

Cut Games..In a cut game, we are given an undirected graphG(V, E), with n vertices and edge weightsw :
E(G) → Q+. We will always assume thatG is connected, simple, and does not contain loops. For eachv ∈ V (G),
let deg(v) be the degree ofv, and letAdj(v) be the set of neighbors ofv. Let alsowv =

∑

u∈Adj(v) wuv . A cut in G is

a partition ofV (G) into two sets,T andT̄ = V (G) − T , and is denoted by(T, T̄ ). The value of a cut is the sum of
edges between the two setsT andT̄ , i.e

∑

v∈T,u∈T̄ wuv.
Thecut gameon a graphG(V, E), is defined as follows: each vertexv ∈ V (G) is a player, and the strategy ofv is

to chose one side of the cut, i.e.v can chosesv = −1 or sv = 1. A strategy profileS = (s1, s2, . . . , sn), corresponds
to a cut(T, T̄ ), whereT = {i|si = 1}. The payoff of playerv in a strategy profileS, denoted byαv(S), is equal to
the contribution ofv in the cut, i.e.αv(S) =

∑

i:si 6=sv
wiv. It follows that the cut value is equal to12

∑

v∈V αv(S). If
S is clear from the context, we useαv instead ofαv(S) to denote the payoff ofv. We denote the maximum value of a
cut inG, by c(G). Thehappinessof a vertexv is equal to

∑

i:si 6=sv
wiv −

∑

i:si=sv
wiv .

We consider two social functions: the cut value and the cut value minus the value of the rest of the edges in the
graph. It is easy to see that the cut value is half the sum of thepayoffs of vertices. The second social function is half
the sum of the happiness of vertices. We call the second social function,total happiness.

3. Congestion Games.In this section, we focus on the convergence to approximate solutions in congestion
games with linear latency functions. It is known [15, 18] that any best-response walk on the state graph leads to a pure
Nash equilibrium, and a pure equilibrium is a constant-factor approximate solution [1, 5, 4]. Unless otherwise stated,
we assume without loss of generality, that the players’ ordering is1, . . . , N .

3.1. Upper Bounds for One-round Walks. In this section, we bound the total delay after one round of best
responses of players. First, we prove that starting from an arbitrary state, the solution after one round of best responses
is aΘ(N)-approximate solution. We will also prove that starting from an empty state, the approximation factor after
one round of best responses is a constant factor. This shows that the assumption about the initial state is critical for
this problem.

THEOREM 3.1. Starting from an arbitrary initial stateS0, any one-round walkP leads to a stateSN that has
approximation ratioO(N).

Proof. Let X be the optimal allocation andSi = (sN
1 , . . . , sN

i , s0
i+1, s

0
N ) an intermediate state.

Let me(S
i), ke(S

i) be the number of the players that play strategies that correspond to the final and of the
initial state respectively, using facilitye in a stateSi, andM(Si), K(Si) the corresponding sums. Clearlyne(A

i) =
me(A

i) + ke(A
i). It follows that:

K(S0) = C(S0) =
∑

e∈E

ke(S
0)fe(ke(S

0)) =
∑

i∈N

∑

e∈s0
i

(2aeke(S
i−1) − ae + be) (3.1)

Since playeri in stateSi−1 prefers strategysN
i thanxi, we get

∑

e∈sN
i

fe(ne(S
i−1)) +

∑

e∈sN
i −s0

i

ae ≤
∑

e∈xi

fe(ne(S
i−1) + 1)

For every intermediate stateSi, the social cost is

C(Si) = C(Si−1) +
∑

e∈sN
i −s0

i

(2aene(S
i−1) + ae + be) +

∑

e∈s0
i −sN

i

(ae − be − 2aene(S
i−1))
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Summing over all intermediate states and using equality (3.1), we get

C(SN ) = C(S0) +
∑

i∈N

∑

e∈sN
i −s0

i

(2aene(S
i−1) + ae + be) +

∑

i∈N

∑

e∈s0
i −sN

i

(ae − be − 2aene(S
i−1))

=
∑

i∈N

∑

e∈sN
i −s0

i

(2aene(S
i−1) + ae + be) +

∑

i∈N

∑

e∈s0
i

(2aeke(S
i−1) − ae + be)

+
∑

i∈N

∑

e∈s0
i −sN

i

(ae − be − 2aene(S
i−1))

=
∑

i∈N

∑

e∈sN
i −s0

i

(2aene(S
i−1) + ae + be) +

∑

i∈N

∑

e∈s0
i ∩sN

i

(2aeke(S
i−1) − ae + be)

−
∑

i∈N

∑

e∈s0
i −sN

i

2aeme(S
i−1)

≤ 2
∑

i∈N

∑

e∈sN
i

fe(ne(S
i−1)) + 2

∑

i∈N

∑

e∈sN
i −s0

i

ae

≤
∑

i∈N

∑

e∈xi

2fe(ne(S
i−1) + 1)

≤
∑

i∈N

∑

e∈xi

2fe(N + 1) =
∑

e∈E

2ne(X)fe(N + 1) = O(N)C(X)

In the next section, we will show that the above bound is tightup to a constant factor. As mentioned earlier, the
assumption about the initial state is critical for this problem. We will call a stateempty, if no player is committed
to any of its strategies. Note that the one-round walk starting from an empty state is essentially equivalent to the
greedy algorithm for a generalized scheduling problem, where a task may be assigned into many machines. Suri et
al. [20, 21] address similar questions for the special case of the congestion games where the available strategies are
single sets. They give a3.08 lower bound and a17/3 upper bound. For the special case of identical facilities (equal

speed machines) they give an upper bound of(φ+1)2

φ ≈ 4.24. We generalize this result for our more general setting.
The following lemma will be used in the analysis.

LEMMA 3.2. For every pair of nonnegative integersα, β it holds

2αβ + 2β − α ≤ 1

φ + 1
α2 + (φ + 1)β2,

whereφ = 1+
√

5
2 is the golden ratio.

THEOREM 3.3. Starting from the empty stateS0, any one-round walkP leads to a stateSN that has approxima-

tion ratio of at most(φ+1)2

φ ≈ 4.24.

Proof. Let Si = (sN
1 , . . . , sN

i−1, s
N
i ) be thei-th state ofP , after playeri, chooses its best response link. Let

X = (x1, . . . xN ) be the optimal or any other allocation. In stateSi−1, playeri’s best response issN
i which leads to

stateSi. So we haveci(S
i) ≤ ci(S

i−1, xi) where(Si−1, xi) is the state produced if playeri chose strategyxi. This
finally gives

∑

e∈sN
i

aene(S
i−1) ≤

∑

e∈xi

(aene(S
i−1) + ae + be) −

∑

e∈sN
i

(ae + be) (3.2)
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Using inequality (3.2), we can bound the social cost of an intermediate stateSi as follows:

C(Si) =
∑

e∈E

ne(S
i)fe(ne(S

i))

=
∑

e∈E−sN
i

ne(S
i−1)fe(ne(S

i−1)) +
∑

e∈sN
i

(ne(S
i−1) + 1)fe(ne(S

i−1) + 1)

= C(Si−1) +
∑

e∈sN
i

(2aene(S
i−1) + ae + be)

≤ C(Si−1) + 2
∑

e∈xi

(aene(S
i−1) + ae + be) −

∑

e∈sN
i

(ae + be)

Summing up these inequalities for all intermediate statesSi for all i ∈ N and using Lemma 3.2, we get

C(SN ) ≤ C(S0) + 2
∑

i∈N

∑

e∈xi

(aene(S
i−1) + ae + be) −

∑

i∈N

∑

e∈sN
i

(ae + be)

≤ 2
∑

i∈N

∑

e∈xi

(aene(S
N ) + ae + be) −

∑

i∈N

∑

e∈sN
i

(ae + be)

= 2
∑

e∈E

ne(X)(aene(S
N ) + ae + be) −

∑

e∈E

ne(S
N )(ae + be)

≤
∑

e∈E

ae(2ne(X)ne(S
N ) + 2ne(X) − ne(S

N )) +
∑

e∈E

be(2ne(X) − ne(S
N ))

≤
∑

e∈E

ae(
1

φ + 1
n2

e(S
N ) + (φ + 1)ne(X)2) +

∑

e∈E

be(2ne(X) − ne(S
N ))

≤ 1

φ + 1
C(SN ) + (φ + 1)C(X)

which finally givesC(SN ) ≤ (φ+1)2

φ C(X) ≈ 4.24C(X).

Now we turn our attention to weighted congestion games with linear latency functions, where playeri has
weighted demandwi. Fotakis et al. [9] showed that this game with linear latencyfunctions is a potential game.

THEOREM 3.4. In weighted congestion games with linear latency functions, starting from the initial empty state
S0, any one-round walkP leads to a stateSN that has approximation ratio of at most(1 +

√
3)2 ≈ 7.46.

Proof. Let Si = (sN
1 , . . . , sN

i−1, s
N
i ) be thei-th state ofP , after playeri chooses its best response link. Let

X = (x1, . . . xN ) be the optimal allocation. In stateSi−1, playeri’s best response issN
i and it leads to stateSi. Thus

we haveci(S
i) ≤ ci(S

i−1, xi) where(Si−1, xi) is the state produced if playeri chooses strategyxi. This finally gives

∑

e∈sN
i

(aeθe(S
i−1) + aewi + be) ≤

∑

e∈xi

(aeθe(S
i−1) + aewi + be)

Multiplying both parts bywi, we get

∑

e∈sN
i

(aeθe(S
i−1) + aewi + be)wi ≤

∑

e∈xi

(aeθe(S
i−1) + aewi + be)wi (3.3)
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Using (3.3), we can bound the social cost of an intermediate stateSi as follows:

C(Si) =
∑

e∈E

θe(S
i)fe(θe(S

i))

=
∑

e∈E−sN
i

θe(S
i−1)fe(θe(S

i−1)) +
∑

e∈sN
i

(θe(S
i−1) + wi)fe(θe(S

i−1) + wi)

= C(Si−1) +
∑

e∈si
i

(2aeθe(S
i−1)wi + aew

2
i + bewi)

≤ C(Si−1) + 2
∑

e∈xi

(aeθe(S
i−1) + aewi + be)wi

Summing up these inequalities for all intermediate states for all playersi ∈ N and using Cauchy-Schwarz inequality,
we get:

C(SN ) ≤ C(S0) + 2
∑

i∈N

∑

e∈xi

(aeθe(S
i−1) + aewi + be)wi

≤ 2
∑

i∈N

∑

e∈xi

(aeθe(S
N ) + aewi + be)wi

≤ 2
∑

e∈E

aeθe(S
N )θe(X) + 2

∑

e∈E

(aeθ
2
e(X) + beθe(X))

≤ 2

√

∑

e∈E

aeθ2
e(S

N )
∑

e∈E

aeθ2
e(X) + 2C(X)

≤ 2
√

C(SN )C(X) + 2C(X)

After dividing by C(X) and settingx =
√

C(SN)
C(X) , we getx2 ≤ 2x + 2, which givesC(SN ) ≤ (1 +

√
3)2C(X) ≈

7.46C(X).

3.2. Lower Bounds. In this section, we give lower bounds for the approximation factor of a state resulting after
a one-round deterministic best-response walk. The next theorem shows that the result of theorem 3.1 is tight and
explains why it is necessary in the upper bounds given above to consider walks starting from an empty allocation.

THEOREM 3.5. For anyN > 0, there exists anN -player instance of the unweighted congestion game, an initial
stateS0, and a one-round walk that results to anΩ(N)-approximate solution.

Proof. Consider2N −1 players and2N −1 facilities. The strategy set for playeri is Si = {{i}, {N}}, for i ≤ N
andSi = {{1, . . .N − 1}, {i}}, for i > N . At the initial allocationS0, each player plays his first strategy. For each
i ∈ {1, . . . , N}, at stepi, playeri selects his best response. During the one-round walk in which we let player1, . . .N
play their best response, all the playersi ≤ N will deviate to strategy{N} and the rest will deviate to strategy{i}.
After one round, the cost of the allocation isN2 + N − 1 while the optimal allocation (where every player plays{i})
has cost2N − 1.

We next extend theorem 3.5 for the case oft-covering walks, fort > 1.
THEOREM 3.6. For any t > 0, and for any sufficiently largeN > 0, there exists anN -player instance of the

unweighted congestion game, an initial stateS0, and an orderingσ of the players, such that starting fromS0, after t
rounds where the players play according toσ, the cost of the resulting allocation is a(N/t)ǫ-approximation, where
ǫ = 2−O(t).

Proof. Let k > 0 be a sufficiently large integer. LetX =
⋃t+1

i=1 Xi be a set of players whereXi = {xi,j}|Xi|−1
j=0 .

Let P =
⋃t+1

i=0 Pi be a set of facilities wherePi = {pi,j}|Pi|−1
j=0 . Let |P0| = n0 and for eachi ∈ {1, . . . , t + 1}, let

|Xi| = |Pi| = ni whereni is a value to be determined later. The players inX are ordered inσ so that playerxi,j

plays before playerxi′,j′ , iff i < i′, or i = i′, andj < j′.
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Each player has two strategies. The first strategy of playerxi,j is to play a single facility from the setPi−1 while
her second strategy is to playαi facilities from the setPi, whereαi will be specified later. Formally, the strategies of
playerxi,j are:

• {pi−1,j mod ni−1}, and
• {pi,j mod ni , pi,j+1 mod n, . . . , pi,j+αi−1 mod ni}.

We setn0 = 1 and for eachi ∈ {1, . . . , t+1}, we setni = ki
∏i−1

j=1 αj−i
j , andαi = k2−i−ǫi , whereǫi = 2i−2t−3.

It is straightforward to verify that for eachi ∈ {1, . . . , t + 1}, k < ni < k2. Thus, the total number of players is
N = O(tk2).

We start by computing an upper bound for the cost of an optimalallocation. Consider a stateS′ in which every
player plays its second strategy. It is easy to see that in this allocation, for eachi ∈ {1, . . . , t + 1}, theni players in
Xi share uniformly theni facilities inPi. That is, each facility inPi is shared byαi players ofXi. Thus, each player
in Xi paysα2

i , and the total cost is

C(S′) =
t+1
∑

i=1

α2
i ni =

t+1
∑

i=1

k2(2−i−ǫi)ki
i−1
∏

j=1

(k2−j−ǫj )j−i =
t+1
∑

i=1

k2−2ǫi+
Pi−1

j=1(i−j)ǫj

Observe that2ǫi > 2−2t−3 +
∑i−1

j=1(i − j)ǫj . Thus, we obtain

C(S′) <

t+1
∑

i=1

k2−2−2t−3

= (t + 1)k2−2−2t−3

We will now compute the cost of the strategy profile resultingafter t rounds, starting from a specific state. For
eachr ∈ {0, . . . , t}, let Sr be the state resulting afterr rounds. In the initial stateS0, all the players play their first
strategy. We will show inductively that inSr, all the players in

⋃t−r+1
i=1 Xi still play their first strategy.

The assertion is clearly true forr = 0. Assume now that the assertion holds for eachr < r′, and consider the
roundr = r′. In the beginning of this round, the state isSr−1. Consider a playerxi,j , with i ≤ t − r + 1. By the
induction hypothesis, in the beginning of roundr, each player inXi+1 plays its first strategy. Since each player in
Xi+1 plays after playerxi,j , it follows that this is also true whenxi,j plays. This means that all theni+1 players in
Xi+1 share uniformly theni facilities of Pi. Since each player inXi+1 plays a single facility in its first strategy, it
follows that each facility inPi is being shared byni+1/ni players inXi+1. Also, each player inXi plays in its second
strategyαi facilities inPi. Thus, the cost of the second strategy for playerxi,j is at leastα2

i
ni+1

ni
= k αi

α1α2...αi−1
.

On the other hand, it follows by the inductive hypothesis that all the facilities inPi−1 are shared only by players
in Xi. Since each player inXi plays a single facility inPi−1, it follows that each of theni−1 facilities inPi−1 is being
shared byni/ni−1 players inXi. Thus, the cost of the first strategy of playerxi,j is ni

ni−1
= k 1

α1α2...αi
.

Thus the cost of the second strategy is greater than the cost of the first strategy. This implies that for each
i ≤ t − r + 1, each player inXi plays her first strategy after the end roundr, and the inductive claim follows.

By the above argument it follows that aftert rounds, each player inX1 plays her first strategy. That is, all of the
k players inX1 share the single facility ofP0. It follows thatC(St) ≥ k2. Thus, the ratio between the cost ofSt,
and the cost of an optimal allocation is at leastC(St)/C(S′) > k2−2t−3

/(t + 1). SinceN = (tk2), it follows that the
approximation ratio is at least(N/t)2

−O(t)

.
Finally, we strengthen theorem 3.5 by showing that there areinstances for which the cost of the solution after any

arbitrary one-round walk is anΩ(N)-approximate solution.
THEOREM 3.7. For anyN > 0, there exists anN -player instance of the unweighted congestion game, and an

initial stateS0 such thatfor anyone-round walkP starting fromS0, the state at the end ofP is anΩ(N)-approximate
solution.

Proof.
Consider2N players and2N + 2 facilities {0, 1, . . .2N + 1}. The available strategies for the first players are

{{0}, {i}, {N + 1, . . . , 2N}} and for theN last{{2N + 1}, {i}, {1, . . . , N}}. In the initial allocation, every player
plays its third strategy. Consider any order on the players and let them begin to choose their best responses. It is easy
to see that in the first steps, the players would prefer their first strategy. If this happens until the end of the round, the
resulting cost isΩ(N2). Thus, we can assume that at some step, the(k + 1)-th player from the set{1, . . . , N} prefers
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his second strategy while all the previousk players of the same set have chosen their first strategies. The status of
the game at this step is as follows:k players of the first group play their first strategy,m players of the second group
play their first strategy and the remaining players play their initial strategy. Since playerk + 1 prefers his second
strategy, this meansk = N − m and so one of them, N is at leastN/2. The cost at the end will thus be at least
m2 + k2 + N = Ω(N2). On the other hand, in the optimal allocation everybody chooses its second strategy which
gives cost2N . Thus, the approximation ratio isΩ(N).

An interesting fact is that if a player doesn’t have to choosehis best response strategy, but just a strategy that
improves his cost, then there always exist one-round walks that result to a constant approximation. To see that, assume
that in an optimal allocation, the strategy of each playeri, is si, and that the players know these strategies. Construct
an orderingσ of the players as follows: Initially,σ is empty. At each step, augmentσ by adding a playeri that does
not appear inσ, and such that ifi playssi in the current allocation, he reduces his cost. Continue this procedure
until there are no such players, and letS be the resulting state. Observe that inS, every playeri either playssi, or
prefers his current strategy than playingsi. By using techniques similar to those of subsection 3.1, we can bound the
approximation factor of the cost ofS by a constant. As a result, this one round of improvements gives a constant-factor
approximate solution.

REMARK 1. It is not hard to modify the proofs of Theorems 3.5, 3.6,and 3.7 to hold for multi-commodity selfish
routing games. This can be done by defining a directed networkwith multiple sources and destinations and linear
latency functions on edges. Due to space limitations, we leave the details of the proof for the full version of the paper.

4. Cut Games: The Cut Social Function.

4.1. Fast Convergence on Random Walks.First we prove positive results for the convergence to constant-factor
approximate solutions with random walks. We show that the expected value of the cut after a random one-round walk
is within a constant factor of the maximum cut.

THEOREM 4.1. In weighted graphs, the expected value of the cut at the end ofa random one-round walk is at
least 1

8 of the maximum cut.
Proof. It suffices to show that after a random one-round walk, for everyv ∈ V (G), E[αv] ≥ 1

8wv.
Consider a vertexv. The probability thatv occurs after exactlyk of its neighbors is 1

deg(v)+1 . After v moves,
the contribution ofv in the cut is at leastwv

2 . Conditioning on the fact thatv occurs after exactlyk neighbors, for

each vertexu in the neighborhood ofv, the probability that it occurs afterv is deg(v)−k
deg(v) , and only in this caseu can

decrease the contribution ofv in the cut by at mostwuv. Thus the expected contribution ofv in the cut is at least
max(0, wv(

1
2 − deg(v)−k

deg(v) )). Summing over all values ofk, we obtainE[αv] ≥
∑deg(v)

k=0
1

deg(v)+1 max(0, wv(1
2 −

deg(v)−k
deg(v) )) = wv

deg(v)+1

∑⌊ deg(v)
2 ⌋+1

k=0
2k−deg(v)
2deg(v) ≥ wv

8 . The result follows by the linearity of expectation.The next
theorem studies a random walk of best responses (not necessarily a one-round walk).

THEOREM 4.2. There exists a constantc > 0 such that the expected value of the cut at the end of a random walk
of lengthcn logn is a constant-factor of the maximum cut.

Proof. Let G(V, E) be a weighted graph, and letX = x1, x2, . . . , xk be a sequence, where eachxi is chosen
uniformly at random fromV (G). There exists a constantc, such that ifk = cn log n, thenX contains each element
of V (G) with probability1 − 1

n3 . By the union bound, all vertices occur inX with with probability1 − 1
n2 . Thus, it

is sufficient to prove the assertion conditioning on the factthat all vertices occur inX .
Assume now thatX contains all the elements ofV (G), and for eachv ∈ V (G) let t(v) be the largesti, with

1 ≤ i ≤ k, such thatxi = v. Consider now the subsequenceX ′ of X , such thatX ′ contains only those elementsxi,
such thati = t(v), for somev ∈ V (G). It is easy to see thatX ′ induces a random one-round walk. Observe that for
xt(u), xt(v) ∈ X ′, with t(u) < t(v), we know that after vertexv plays, the contribution ofv in the cut that is due to the
edge{u, v} cannot change. Therefore, by applying the same argument as in the proof of Theorem 4.1, the assertion
follows.

4.2. Poor Deterministic Convergence.We now give lower bounds for the convergence to approximate solutions
for the cut social function. First, we give a simple example for which we need at leastΩ(n) rounds of best responses
to converge to a constant-factor cut. The construction resembles a result of Poljak [17].

THEOREM 4.3. There exists a weighted graphG(V, E), with |V (G)| = n, and an ordering of vertices such that
for anyk > 0, the value of the cut afterk rounds of letting players play in this ordering is at mostO(k/n) of the
maximum cut.
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Ti

T̄i

v0 x1

x2 . . . xn−1 xn

(a) i is even.

Ti

T̄i v0

x1 x2 . . . xn−1

xn

(b) i is odd.

FIG. 4.1.The cut(Ti, T̄i) along the walk of the proof of Theorem 4.4.

Proof. Consider a graphG(V, E), with V (G) = {1, 2, . . . , n}, andE(G) =
⋃i−1

i=1{{i, i + 1}}. For anyi, with
1 ≤ i < n, the weight of the edge{i, i + 1}, is 1 + (i − 1)/n2. SinceG is bipartite, the value of the maximum cut of
G is c(G) =

∑n−1
i=1 (1 + (i − 1)/n2) = Ω(n).

Let σ be an ordering of the vertices ofG, with σ(i) = i. Consider the execution of the one-round walk for the
orderingσ. Initially, we haveT = V (G). It is easy to see that in any roundi ≥ 1, when vertexj plays, ifj ≤ n− i, j
moves to the other part of the cut. Otherwise, ifj > n − i, j remains in the same part of the cut. Thus, after roundi,
we have

T =

{

{n, n − 2, n − 4, . . . , n − i + 1} if i is odd
{1, 2, . . . , n − i − 1)} ∪ {n, n − 2, n − 4, . . . , n − i} if i is even

It easily follows that the size of the cut afterk rounds according to the orderingσ, is
∑n−1

i=n−k 1 + (i− 1)/n2 = O(k).

We next combine a modified version of the above construction with a result of Schaffer and Yannakakis for the
Max-Cut local search problem [22], to obtain an exponentially-long walk with poor cut value.

THEOREM 4.4. There exists a weighted graphG(V, E), with |V (G)| = Θ(n), and ak-covering walkP in the
state graph, for somek exponentially large inn, such that the value of the cut at the end ofP , is at mostO(1/n) of
the optimum cut.

Proof. In [22], it is shown that there exists a weighted graphG0(V, E), and an initial cut(T0, T̄0), such that
the length ofany walk in the state graph, from(T0, T̄0) to a pure strategy Nash equilibrium, is exponentially long.
Consider such a graph of sizeΘ(n), with V (G0) = {v0, v1, . . . , vN}. Let P0 be an exponentially long walk from
(T0, T̄0) to a Nash equilibrium in which we let verticesv0, v1, . . . , vN play in this order for exponential an number
of rounds. LetS0, S1, . . . , S|P0| be the sequence of states visited byP0 and letyi be the vertex that plays his best
response from stateSi to stateSi+1. The result of [22] guarantees that there exists a vertex, say v0, which wants to
change side (i.e. strategy) an exponential number of times along the walkP0 (since otherwise we can find a small
walk to a pure Nash equilibrium). Lett0 = 0, and fori ≥ 1, let ti be the time in whichv0 changes side for thei-th
time along the walkP0. For i ≥ 1, letQi be the sequence of verticesyti−1+1, . . . , yti . Observe that eachQi contains
all of the vertices inG0.

Consider now a graphG, which consists of a pathL = x1, x2, . . . , xn, and a copy ofG0. For eachi ∈ {1, . . . , n−
1}, the weight of the edge{xi, xi+1} is 1. We scale the weights ofG0, such that the total weight of the edges ofG0

is less than 1. Finally, for eachi ∈ {1, . . . , n}, we add the edge{xi, v0}, of weightǫ, for some sufficiently smallǫ.
Intuitively, we can pick the value ofǫ, such that the moves made by the vertices inG0, are independent of the positions
of the vertices of the pathL in the current cut.

For eachi ≥ 1, we consider an orderingRi of the vertices ofL, as follows: Ifi is odd, thenRi = x1, x2, . . . , xn,
and if i is even, thenRi = xn, xn−1, . . . , x1.

We are now ready to describe the exponentially long path in the state graph. Assume w.l.o.g., that in the initial
cut forG0, we havev0 ∈ T0. The initial cut forG is (T, T̄ ), with T = {x1} ∪ T0, andT̄ = {x2, . . . , xn} ∪ T̄0. It is
now straight-forward to verify that there exists an exponentially largek, such that for anyi, with 1 ≤ i ≤ k, if we let
the vertices ofG play according to the sequenceQ1,R1,Q2,R2, . . . ,Qi,Ri, then we have (see Figure 4.1):

• If i is even, then{v0, x1} ⊂ T , and{x2, . . . , xn} ⊂ T̄ .
• If i is odd, then{x1, . . . , xn−1} ⊂ T , and{v0, xn} ⊂ T̄ .

It follows that for eachi, with 1 ≤ i ≤ k, the size of the cut is at mostO(1/n) times the value of the optimal cut. The
result follows since each walk in the state graph induced by the sequenceQi andRi is a covering walk.
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4.3. Mildly Greedy Players. By Theorem 4.1, it follows that for any graph, and starting from an arbitrary cut,
there exists a walk of length at mostn to anΩ(1)-approximate cut. On the other hand, Theorems 4.3 and 4.4, show
that there are cases where a deterministic ordering of players may result to very long walks that do not reach an
approximately good cut.

We observe that if we change the game by assuming that a vertexchanges side in the cut if his payoff is multiplied
by at least a factor1 + ǫ, for a constantǫ > 0, then the convergence is faster. We call such vertices(1 + ǫ)-greedy. In
the following, we prove that if all vertices are(1 + ǫ)-greedy for a constantǫ > 0, then the value of the cut after any
one-round walk is within a constant factor of the optimum.

THEOREM 4.5. If all vertices are(1 + ǫ)-greedy, then the cut value at the end of any one-round walk iswithin a
min{ 1

4+2ǫ ,
ǫ

4+2ǫ} factor of the optimal cut.
Proof. Consider a one-round walkP . For each vertexv, let α′

v be the payoff ofv right after its occurrence in
P , and letαv be the payoff ofv at the end ofP . Let V1 be the set of vertices that did not change their side in the
one-round walk andV2 = V (G)\V1. For a vertexv ∈ V2, letrv be the total weight of the edges that are removed from
the cut afterv moves. For a setT ⊆ V (G), let W (T ) =

∑

v∈T wv. Thus,
∑

v∈V (G) αv =
∑

v∈V1
αv +

∑

v∈V2
αv ≥

∑

v∈V1
α′

v +
∑

v∈V2
α′

v − ∑

v∈V2
rv ≥ 1

2+ǫW (V1) + 1+ǫ
2+ǫW (V2) − 1

2+ǫW (V2) ≥ min{ 1
2+ǫ ,

ǫ
2+ǫ}W (V (G)). Thus

the value of the cut after this one-round walk, is at least amin( 1
4+2ǫ ,

ǫ
4+2ǫ )-approximation.

4.4. Unweighted Graphs. In unweighted simple graphs, it is straight-forward to verify that the value of the cut
at the end of ann2-covering walk is at least12 of the optimum. The following theorem shows that in unweighted
graphs, the value of the cut after anyΩ(n)-covering walk is a constant-factor approximation.

THEOREM 4.6. For unweighted graphs, the value of the cut after anΩ(n)-covering walk is within a constant-
factor of the maximum cut.

Proof.
Consider ak-covering walkP = (P1, . . . ,Pk), where eachPi is a covering walk. LetM0 = 0, and for any

i ≥ 1, let Mi be the size of the cut at the end ofPi. Note that ifMi − Mi−1 ≥ |E(G)|
10n , for all i, with 1 ≤ i ≤ k, then

clearlyMk ≥ k |E(G)|
10n , and since the maximum size of a cut is at most|E(G)|, the Lemma follows.

It remains to consider the case where there existsi, with 1 ≤ i ≤ k, such thatMi − Mi−1 < |E(G)|
10n . Let V1 be

the set of vertices that change their side in the cut on the walk Pi, andV2 = V (G) \ V1. Observe that when a vertex
changes its side in the cut, the size of the cut increases by atleast 1. Thus,|V1| < |E(G)|

10n , and since the degree of each

vertex is at mostn − 1, it follows that the number of edges that are incident to vertices inV1, is less than|E(G)|
10 .

On the other hand, if a vertex of degreed remains in the same part of the cut, then exactly after it plays, at least
⌈d/2⌉ of its adjacent edges are in the cut. Thus, at least half of theedges that are incident to at least one vertex inV2,
were in the cut, at some point during walkPi. At most |E(G)|

10 of these edges have an end-point inV1, and thus at most
that many of these edges may not appear in the cut at the end ofPi. Thus, the total number of edges that remain in the
cut at the end of walkPi, is at least|E(G)|−|E(G)|/10

2 − |E(G)|
10 = 7|E(G)|

20 . Since the maximum size of a cut is at most
|E(G)|, we obtain that at the end ofPi, the value of the cut is within a constant factor of the optimum.

THEOREM 4.7. There exists an unweighted graphG(V, E), with |V (G)| = n, and an ordering of the vertices
such that for anyk > 0, the value of the cut afterk rounds of letting players play in this ordering is at mostO(k/

√
n)

of the maximum cut.
Proof. Let V (G) =

⋃t
i=1

⋃i
j=1{{vi,j}}, andE(G) =

⋃t−1
i=1

⋃i
j=1

⋃i+1
l=1{{vi,j, vi+1,l}}. Clearly,G is bipartite,

and thus the maximum cut valuec(G) = |E(G)| = Ω(t3) = Ω(n3/2).
Consider now the orderingσ, such that for anyi, j, with 1 ≤ j ≤ i ≤ t, σ( i(i−1)

2 + j) = vi,j . By an argument
similar to the one used in the proof of Theorem 4.3, we obtain that afterk rounds of letting players play according to
the orderingσ, the size of the cut is at mostO(kt2) = O(kn).

5. The Total Happiness Social Function.In this section, we consider the total happiness at the end ofa random
one-round walk starting from a random cut2, for unweighted graphs of large girth. Observe that the price of anarchy
is unbounded for this social function3. An alternative notion for the price of anarchy is the optimistic price of anarchy,

2A random cut is a cut that is chosen uniformly at random from all possible cuts.
3To see that, consider an unweighted cycle of size four,V (G) = {v1, v2, v3, v4}, andE(G) = {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v1}}.

Let T1 = {v1, v2}, andT2 = {v1, v3}. Note that(T1, T̄1) is a cut of total happiness 2, and(T2, T̄2) is a Nash equilibrium of total happiness 0.
Thus, the price of anarchy is4

0
that is unbounded.
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or the price of stability, which is the best ratio between theoptimum and a Nash equilibrium. For a cut game with the
cut, or the total happiness social functions, it is easy to see that the price of stability is 14.

Note that the expected total happiness of a random cut is zero. Thus, a random cut is not an approximate solution
for this social function, even though it is a12 -approximation for the cut social function. Here, we prove that in
unweighted graphs of large girth, starting from a random cut, the total happiness of the cut after a random one-round
walk is an approximate solution. In fact, this gives a sub-logarithmic approximation algorithm for the total happiness
objective function for this class of graphs.

Let G(V, E) be an unweighted graph. For someδ > 0, we call an edge ofG, δ-good, if at least one of its
end-points, has degree at mostδ. Also, we call an edge ofG, δ-bad, if it is not δ-good.

LEMMA 5.1. Let G(V, E), be a graph with|E(G)| ≤ k|V (G)|. Then, the number ofδ-good edges ofG, is at
least δ+1−2k

δ+1 n.
Proof. Since|E(G)| ≤ kn, the average degree ofG is at most2k. If we pick a vertexv ∈ V (G), uniformly at

random, we havePr[deg(v) ≤ δ] = 1 −Pr[deg(v) ≥ δ + 1] ≥ 1 − 2k
δ+1 = δ+1−2k

δ+1 . Thus, at leastδ+1−2k
δ+1 n vertices

have degree at mostδ. Since the degree of each vertex is at least 1 (recall thatG is connected), at leastδ+1−2k
2δ+2 n edges

are adjacent to these vertices, and all of these edges areδ-good.
Consider the cut(T, T̄ ), at the end of a random one-round walk. Let≺ be the total order on the elements of

V (G), defined by the random ordering of the vertices in the random one-round walk. For eache ∈ E(G), let Xe be
an indicator random variable, such thatXe = 1, if one end-point ofe is in T , and the other is in̄T , andXe = 0,
otherwise.

For a pairu, v ∈ V (G), let Eu,v denote the event that there exists a pathp = x1, x2, . . . , x|p|, with u = x1, and
v = x|p|, and for anyi, with 1 ≤ i < |p|, xi ≺ xi+1.

LEMMA 5.2. Let{u, v}, {v, w} ∈ E(G), such thatu ≺ w ≺ v. Then, for anyC′ > 0, there exists a constantC,
such that if the girth ofG is at leastC log n

log log n , thenPr[Eu,w] < n−C′

.
Proof. Sincew ≺ v, it follows that if the eventEu,w happens, then there exists a pathp = x1, x2, . . . , x|p|, which

does not visitv, with u = x1, w = x|p|, andxi ≺ xi+1, for anyi, with 1 ≤ i < n.
Let g be the girth ofG. Consider the subgraphG′ of G \ {v}, induced by the the vertices that are at distance at

mostg − 3 from v. Since the length of the shortest cycle ofG is at leastg, it follows thatG′ is a tree, and it does not
containw. LetP be the set of all paths that start fromu, have lengthg − 3, and do not visitv. SinceG′ is a tree,P
contains less thann paths. Clearly, if a pathp that satisfies the above conditions exists, then there is a path p′ ∈ P ,
with p = x′

1, . . . , x
′
g−2, such that for anyi, with 1 ≤ i < g − 2, x′

i ≺ x′
i+1. Thus, for a sufficiently large constantC,

the probability that such a path exists, is less thann/
(

C log n
log log n − 3

)

! < n−C′

.

LEMMA 5.3. For anye ∈ E(G), we havePr[Xe = 1] ≥ 1/2 − o(1).
Proof. Let e = {u, v}, and assume w.l.o.g., thatu ≺ v. If u is the only neighbor ofv, that precedesv, w.r.to≺,

then clearlyPr[Xe = 1] = 1.
Assume now that there existsu′ ∈ V (G), u′ 6= u, with {u′, v} ∈ E(G), andu′ ≺ v. By Lemma 5.2, it follows

thatPr[Eu,u′ ∨Eu′,u] < 2/nC′

. Observe that if none of the eventsEu,u′ , andEu′,u happens, then the choice of the part
of the cut thatu belongs, is independent of the choice of the part thatu′ belongs. That is, the conditional probability
thatu andu′ are both inT , or T̄ is 1/2.

Sincev has at mostn neighbors, it follows that the probability that there exists neighborsu1, u2 of v, such that
Eu1,u2 happens, is at mostO(1/n). Thus, with probability at least1 − O(1/n), none of these events happens. In this
case, the conditional probability thatXe = 1, is at least1/2. It follows thatPr[Xe = 1] ≥ 1/2 − O(1/n).

LEMMA 5.4. Lete = {u, v} ∈ E(G), with u ≺ v, anddeg(v) ≤ δ. Then,Pr[Xe = 1] ≥ 1/2 + Ω(1/
√

δ).
Proof. By applying the same argument of the proof of Lemma 5.3, we obtain that the probability that there exists

neighborsu1, u2 of v, such thatEu1,u2 happens, is at mostO(1/n). Thus, with probability at least1 − o(1), none of
these events happens.

Assume now that none of these events happens. For each neighborw, of v, letYw be an indicator random variable,
such thatYw = 1, if w is in the same part of the cut withu, andYw = 0, otherwise. LetY =

∑

{w,v}∈E(G) Yw. Since
Pr[Yu = 1] = 1, we obtainE[Y ] = (d + 1)/2. We will consider two cases forδ.

Case 1:If δ is odd, we havePr[{u, v} is cut] ≥ Pr[Y ≥ (δ+1)/2] = Pr[Y = (δ+1)/2]+Pr[Y > (δ+1)/2].
Note thatPr[Y = (δ + 1)/2] = 2−δ+1

(δ−1
δ−1
2

)

= Ω(1/
√

δ). SincePr[Y > (δ + 1)/2] = Pr[Y < (δ + 1)/2], we

4In general, the price of stability in potential games in which the social function is a potential function for the game, isequal to 1.
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obtainPr[{u, v} is cut] = 1/2 + Ω(1/
√

δ).
Case 2:If δ is even, we havePr[{u, v} is cut] = 1

2Pr[Y = δ/2] + Pr[Y > δ/2] = 1
2Pr[Y = δ/2] + 1

2 . Note
thatPr[Y = δ/2] = 2−δ+1

(δ−1
δ
2−1

)

= Ω(1/
√

δ). Thus, we obtainPr[{u, v} is cut] = 1/2 + Ω(1/
√

δ).

THEOREM 5.5. For any unweighted simple graph of girth at least2 logn, starting from a random cut, the
expected value of the happiness at the end of a random one-round walk, is within a constant factor from the maximum
happiness.

Proof. If G(V, E) is a graph of girth at least2 logn, then|E(G)| ≤ 3n. Also, by Lemma 5.1, it follows that
there are at leastn9 , 8-good edges inG. By Lemma 5.3, it follows that the probability that an8-bad edge is cut, is
at least1/2 − o(1), while by Lemma 5.4, the probability that an8-good edge is cut, is at least1/2 + Ω(1). Thus,
the expectation of the total happiness after a random one-round walk isΩ(n). We can similarly prove the following
Theorem.

THEOREM 5.6. There exists a constantC′, such that for anyC > C′, and for any unweighted simple graph
of girth at leastC log n

log log n , starting from a random cut, the expected value of the happiness at the end of a random

one-round walk, is within a 1
(log n)O(1/C) factor of the maximum happiness.

Proof. We have|E(G)| ≤ n + n1+1/⌊ C log n
2 log log n ⌋ < n + n1+ C log n

2 log log n , and for sufficiently largen, |E(G)| =

O(n log1/C n). Also, by Lemma 5.1, it follows that there are at leastΩ(n), log1/C n-good edges inG. By Lemma
5.3, the probability that alog1/C n-bad edge is cut, is at least1/2 − o(1), while by Lemma 5.4, the probability that a
log1/C n-good edge is cut, is at least1/2+Ω(log−1/2C n). Thus, the expectation of the total happiness after a random
one-round walk isΩ(n log−1/2C n).

Note that the above theorem also gives a combinatorial sub-logarithmic approximation algorithm for the total
happiness problem in unweighted graphs of large girth. As mentioned before, this objective function is considered in
the context of correlation clustering problem [2] and alog(n)-approximation is recently known for this function in
general graphs [3].
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